# What is the volume of one hydrogen molecule?

Table of Contents

## What is the volume of one hydrogen molecule?

Every 1 mole of a gas occupies the same volume at STP which is 22.4 litres. So, we have the value of molar volume for hydrogen $ = 22.4l = 22.4 \times {10^{ – 3}}{m^3}$. Now atomic volume can be calculated from the radius of the molecule in the following way.

**What is the volume of 3.5 g of hydrogen at STP?**

2 g occupies 24 dm3, so scaling up for the volume of hydrogen 3.5 g will have a volume of 3.5/2 x 24 = 42 dm3 (or 42000 cm3)

**What is the volume of the gas at STP?**

22.41 L/mol

So, the volume of an ideal gas is 22.41 L/mol at STP. This, 22.4 L, is probably the most remembered and least useful number in chemistry.

### How many molecules are in a volume?

The number of atoms of ANY substance in a volume is: # of atoms = N * (density) * volume / (Molecular Weight). N is a constant called Avogadro’s number and its equal to 6.022*1023 atoms/mole.

**What volume would 3.87 1022 molecules of an ideal gas occupy at STP?**

Answer: The volume of 3.0 x 1025 molecules Ne at STP is 1100 L .

**How do you find the volume of hydrogen?**

- Step 1 – Calculate the amount of sodium. Amount in mol = Amount in mol =
- Step 2 – Find the amount of hydrogen. From the balanced equation , the mole ratio Na:H 2 is 2:1. Therefore 0.20 mol of Na produces = 0.10 mol of H 2
- Step 3 – Calculate the volume of hydrogen. Volume = amount in mol × molar volume. Volume = 0.10 × 24.

## What is atomic volume of hydrogen?

Solution 2 Volume of one hydrogen atom = 4/3 πr3 (volume of sphere) = 4/3 x 3.14 x (0.5 x 10-10) m3 = 5.23 x 10-31 m3. According to Avagadro’s hypothesis, one mole of hydrogen contains 6.023 x 1023 atoms. Atomic volume of 1 mole of hydrogen atoms = 6.023 x 1023 x 5.23 x 10-31 = 3.15 x 10-7m3.

**What is the volume of 1 g of hydrogen at STP?**

According to the universal gas constant, 1 mole of ANY gas at STP occupies 22.4 L of space, and since the molar mass of Hydrogen is 1 g, we can say that 1 g of Hydrogen=one mole of Hydrogen, so 1 g of Hydrogen occupies 22.4 L of space.

**What volume would it occupy at STP?**

22.4 L

At Standard Temperature and Pressure (STP), 1 mole of any gas will occupy a volume of 22.4 L.

### What is the volume of hydrogen in various units?

The entered volume of Hydrogen in various units of volume. 1 cubic centimeter of Hydrogen weighs 0.000082 gram [g] 1 cubic inch of Hydrogen weighs 0.000047399 ounce [oz] Hydrogen weighs 0.000082 gram per cubic centimeter or 0.082 kilogram per cubic meter, i.e. density of hydrogen is equal to 0.082 kg/m³; at 0°C (32°F or 273.15K)

**What is the volume occupied by 2 moles of an ideal gas?**

So, if you are given these values for temperature and pressure, the volume occupied by any number of moles of an ideal gas can be easily derived from knowing that 1 mole occupies 22.4 L. V = n ⋅ V molar For 2 moles of a gas at STP the volume will be 2 moles ⋅ 22.4 L/mol = 44.8 L

**What is the density of hydrogen at 5 Bara and 24°C?**

Example 1: Density of hydrogen at 5 bara and 24 °C. Calculator gives the density at 24 °C and 1 bara: 0.0815 [kg/m 3] Density at 24°C and 5 bara: 0.0815 [kg/m 3]* 5[bara]/1[bara] = 0.408 [kg/m 3]

## Why would knowing the molar volume of a gas be important?

Why would knowing the molar volume of a gas be important? The molar volume of a gas expresses the volume occupied by 1 mole of that respective gas under certain temperature and pressure conditions.